Grade 11/12 Math Circles

November 30, 2022

Generating Functions 2 - Solutions

Exercise Solutions

Exercise: Rolling a regular 8-sided die

Create a combinatorial class (including a set and weight function) to represent rolling a regular 8-sided die.

Exercise: Rolling a regular 8-sided die Solution

Set: ways to roll the die $\{1, 2, 3, 4, 5, 6, 7, 8\}$.

Weight Function: w(x) = x, the value shown on the die.

Exercise: Choosing 5 cent coins

Create a combinatorial class (including a set and weight function) to represent choosing some number of 5 cent coins from an infinitely large pile.

Exercise: Choosing 5 cent coins Solution

Set: the ways that we could choose some number of coins $\{0, 1, 2, 3, 4, \ldots\}$.

Weight Function: w(x) = 5x, the total value of the coins chosen.

Exercise: Rolling two regular 4-sided dice - Method 1

Find the generating function for the combinatorial class representing one roll of two regular 4-sided dice, where the weight function is the sum of the values rolled. To find this generating function, create a chart of the potential results from rolling the two dice.

Exercise: Rolling two regular 4-sided dice - Method 1 Solution

Rolling two regular 4-sided dice gives the potential results:

	1	2	3	4
1	2	3	4	5
2	3	4	5	6
3	4	5	6	7
4	5	6	7	8

This gives a generating function of $z^2 + 2z^3 + 3z^4 + 4z^5 + 3z^6 + 2z^7 + z^8$.

Exercise: Rolling two regular 4-sided dice - Method 2

Find the generating function for the combinatorial class representing one roll of two regular 4-sided dice, where the weight function is the sum of the values rolled. This time, try using the multiplication of two combinatorial classes.

Exercise: Rolling two regular 4-sided dice - Method 2 Solution

Create a combinatorial class for rolling one regular 4-sided die:

 $\mathcal{A} = \mathcal{B}$:

Set: Ways to roll a regular 4-sided die $\{1, 2, 3, 4\}$

Weight Function: w(x) = x

Generating Function: $z + z^2 + z^3 + z^4$

Then, if we multiply \mathcal{A} and \mathcal{B} , we get:

Set: Ways to roll two 4-sided dice $\{(1,1),(1,2),\ldots,(4,3),(4,4)\}$

Weight Function: w((a,b)) = a + b

Generating Function: $(z + z^2 + z^3 + z^4)^2 = z^2 + 2z^3 + 3z^4 + 4z^5 + 3z^6 + 2z^7 + z^8$.

Exercise: Compositions of 4

What are the compositions of 4?

Exercise: Compositions of 4 Solution

The compositions of 4 are:

1 part: (4)

2 parts: (3, 1), (1, 3), (2, 2)

3 parts: (2, 1, 1), (1, 2, 1), (1, 1, 2)

4 parts: (1, 1, 1, 1)

Problem Set Solutions

- 1. Create combinatorial classes and corresponding generating functions for the following situations:
 - (a) 0-1 strings where we wish to count by the length of the strings.
 - (b) 0-1-2 strings where we wish to count by the length of the strings.
 - (c) Strings with k possible number entries, where we wish to count by the length of the strings.
 - (d) Drawing socks out of a basket, where there are 3 red socks, 5 blue socks, 10 purple socks and 12 green socks.

Solution:

(a) **Set:** 0-1 strings.

Weight Function: w(x) =the length of the string.

Generating Function: $F(z) = 1 + 2z + 4z^2 + 8z^3 + \ldots = \sum_{n=0}^{\infty} (2z)^n = \frac{1}{1-2z}$

(b) **Set:** 0-1-2 strings.

Weight Function: w(x) =the length of the string.

Generating Function: $F(z) = 1 + 3z + 9z^2 + 27z^3 + ... = \sum_{n=0}^{\infty} (3z)^n = \frac{1}{1-3z}$

(c) **Set:** Strings with k possible number entries.

Weight Function: w(x) =the length of the string.

Generating Function: $F(z) = 1 + kz + k^2z^2 + k^3z^3 + ... = \sum_{n=0}^{\infty} (kz)^n = \frac{1}{1-kz}$

(d) Note that for this set, since we have not specified a weight function, our definition of the combinatorial class is not unique. The following includes an example of a valid weight function for the situation.

Set: The set of socks that could be drawn. For each sock that is the same colour, give it a different label so that it is different in the set.

Weight Function: w(x) = 1 if the sock is red, w(x) = 4 if the sock in blue, w(x) = 10 if the sock is purple and w(x) = 15 if the sock is green. (Note that we could have chosen any weights in the non-negative integers, \mathbb{N} , for the weight function since the required weights are not specified in the problem.)

Generating Function: $F(z) = 3z + 5z^4 + 10z^{10} + 12z^{15}$

- 2. Recall that $[z^n]F(z)$ represents the coefficient of z^n in the generating function F(z). From your answers to Problem 1, find an expression for the following coefficients and describe each coefficient represents:
 - (a) $[z^{12}]F(z)$, where F(z) is the generating function from Problem 1a.
 - (b) $[z^{40}]F(z)$, where F(z) is the generating function from Problem 1b.
 - (c) $[z^n]F(z)$, where F(z) is the generating function from Problem 1c.

Solution: From the summation notation of the generating function:

- (a) We see that the number in front of z^{12} , ie $[z^{12}]F(z)$, is 2^{12} .
- (b) We see that $[z^{40}]F(z) = 3^{40}$.
- (c) We get that the general form is $[z^n]F(z) = k^n$.
- 3. Find a generating function for 0-1-2 strings which start with 012.

Solution: Define \mathcal{A} and \mathcal{B} as the following:

 \mathcal{A} :

Set: 0-1-2 strings **Set:** {012}

Weight Function: Length of string Weight Function: Length of string

GF: $A(z) = \frac{1}{1-3z}$ **GF:** $B(z) = z^3$

Then:

 $\mathcal{B} * \mathcal{A}$:

Set: (012, a), where a is a 0-1-2 string. This is equivalent to all 0-1-2 strings with 012 at the start of the string.

Weight Function: $w((012, a)) = 3 + w_A(a) =$ the length of the string created by pasting together all components.

Generating Function: $B(z)A(z) = \frac{z^3}{1-3z}$

4. Find an expression for the number of ways to make \$2.65 in change (with 5, 10 and 25 cent coins available, as well as 1 and 2 dollar coins).

Solution: We answer this in a similar manner to the coin problem. Define the following:

 \mathcal{A} : \mathcal{B} :

Set: Set: Set:

Choices for the number of 5¢ Choices for the number of Choices for the number of

coins, $\{0, 1, 2, \ldots\}$ 10¢ coins, $\{0, 1, 2, \ldots\}$ 25¢ coins, $\{0, 1, 2, \ldots\}$

WF: $w_A(x) = 5x$ **WF:** $w_B(x) = 10x$ **WF:** $w_C(x) = 25x$

GF: $A(z) = \frac{1}{1-z^5}$ **GF**: $B(z) = \frac{1}{1-z^{10}}$ **GF**: $C(z) = \frac{1}{1-z^{25}}$

 \mathcal{D} : \mathcal{E} :

Set: Set:

Choices for the number of \$1 Choices for the number of \$2

coins, $\{0, 1, 2, \ldots\}$ coins, $\{0, 1, 2, \ldots\}$

WF: $w_D(x) = 100x$ **WF:** $w_E(x) = 200x$

GF: $D(z) = \frac{1}{1-z^{100}}$ **GF:** $E(z) = \frac{1}{1-z^{200}}$

Then,

 $\mathcal{A} * \mathcal{B} * \mathcal{C} * \mathcal{D} * \mathcal{E}$:

Set: (a, b, c, d, e). In other words, each element represents a choice of coins.

Weight Function: w((a, b, c, d, e)) = 5a + 10b + 25c + 100d + 200e. In other words, the total value of the coins chosen.

Generating Function: $A(z)B(z)C(z)D(z)E(z) = \frac{1}{(1-z^5)(1-z^{10})(1-z^{25})(1-z^{100})(1-z^{200})}$

To get our required result, we need to find the coefficient of z^{265} , as \$2.65 is 265 cents. So, an expression for the number of ways to make \$2.65 in change is $[z^{265}] \frac{1}{(1-z^5)(1-z^{10})(1-z^{25})(1-z^{100})(1-z^{200})}$. Note: Using SageMath, we find there are 258 ways.

- 5. Find two 4-sided dice such that:
 - Each side has a positive integer number of dots
 - The two dice are not the same
 - The probability of rolling a sum of $2, \ldots, 8$ on these dice is the same as the probabilities for regular 4-sided dice

Hint: $(z + z^2 + z^3 + z^4)^2 = (z^2 + 1)^2(z + 1)^2z^2$

Solution: As with the Sicherman Dice, we start by converting each of these requirements into generating function terminology.

- (a) Having a positive integer number of dots means that the new dice cannot have a constant (z^0) term.
- (b) To have different dice, the corresponding generating functions for each die must be different.
- (c) To have the same probabilities, the generating function created by multiplying the two dice generating functions together must be the same as for regular dice.
- (d) To be 4-sided, A(1) = B(1) = 4.

From Problem 2b, we found that the generating function of rolling two 4-sided dice is $F(z) = z^2 + 2z^3 + 3z^4 + 4z^5 + 3z^6 + 2z^7 + z^8 = (z + z^2 + z^3 + z^4)^2$. If we factor this, we get $F(z) = (z^2 + 1)^2(z + 1)^2z^2$.

In order to satisfy Requirement (a), we need each die to have a factor of z. Since we need the dice to be 4-sided and $(1^2 + 1) = (1 + 1) = 2$, we need each die to have two total of the $z^2 + 1$ and z + 1 factors. Since the dice cannot be the same, this gives new dice with generating functions $A(z) = z(z+1)^2 = z + 2z^2 + z^3$ and $B(z) = z(z^2+1)^2 = z + 2z^3 + z^5$. So, our two new dice have sides $\{1, 2, 2, 3\}$ and $\{1, 3, 3, 5\}$.

- 6. Challenge: For any two *n*-sided fair dice $(n \ge 2)$, will there always exist two other *n*-sided dice such that:
 - Each side has a positive integer number of dots
 - The two dice are not the same
 - The probability of rolling a sum of $2, 3, 4, \ldots, 2n$ on these dice is the same as the probabilities for two fair n-sided dice

Solution: No. Consider n = 2. Then, in order to have the same probabilities of rolling 2,3,4, the new dice must have generating functions which multiply to $(z + z^2)^2$ (similar to our solution for Problem 5). Factoring, this gives $(z + 1)^2 z^2$. Since each side of our dice needs to have a positive integer number of dots, each die's corresponding generating function must have a factor of z. This leaves two remaining options for the generating functions of the dice.

Option 1: Die 1 and 2 have the same generating function, (z+1)z. This is not valid as

it would imply that the two dice are the same.

Option 2: One die has a generating function of z and the other has a generating function $(z+1)^2z$. This does not work as z would imply that the first die has only one side.

So, since no option works and there are no other dice for the n=2 case. Thus, the statement does not hold in general.

7. How many compositions of n have k parts, where each part is an odd number?

Solution: We begin by defining the following combinatorial class:

 \mathcal{A} :

Set: $\{1, 3, 5, \ldots\}$

Weight Function: w(x) = x

Generating Function: $A(z) = z + z^3 + z^5 + \ldots = \frac{z}{1-z^2}$

We note that A defines the combinatorial class for the compositions of n with 1 part, where the part is an odd number.

Then,

 \mathcal{A}^k :

Set: (a_1, a_2, \ldots, a_k) , where each a_i is an element of $\{1, 3, 5, \ldots\}$

Weight Function: $w((a_1, a_2, ..., a_k)) = a_1 + a_2 + ... + a_k$

Generating Function: $(A(z))^k = \frac{z^k}{(1-z^2)^k}$

This then gives the generating function for the compositions with k parts, with each part an odd number, where the weight function is the sum of the integers in the composition. So, we want:

$$[z^{n}] \frac{z^{k}}{(1-z^{2})^{k}} = [z^{n}] z^{k} \frac{1}{(1-z^{2})^{k}}$$

$$= [z^{n-k}] \frac{1}{(1-z^{2})^{k}}$$

$$= [z^{n-k}] \sum_{m=0}^{\infty} {m+k-1 \choose k-1} z^{2m}$$

$$= \begin{cases} {\binom{\frac{n-k}{2}+k-1}{k-1}} & \text{if } n-k \text{ is even} \\ 0 & \text{if } n-k \text{ is odd} \end{cases}$$

8. Find the generating function for compositions of n which have k parts, where each part is at most 3.

Solution: We begin by defining the following combinatorial class:

 \mathcal{A} :

Set: {1, 2, 3}

Weight Function: w(x) = x

Generating Function: $A(z) = z + z^2 + z^3$

We note that \mathcal{A} defines the combinatorial class for the compositions of n with 1 part, where that part is at most 3.

Then,

 \mathcal{A}^k :

Set: (a_1, a_2, \ldots, a_k) , where each a_i is an element of $\{1, 2, 3\}$

Weight Function: $w((a_1, a_2, ..., a_k)) = a_1 + a_2 + ... + a_k$

Generating Function: $(A(z))^k = (z + z^2 + z^3)^k$

This then gives the generating function for the compositions with k parts, with each part at most 3, where the weight function is the sum of the integers in the composition.

9. Find the generating function for compositions of n which have 1 or 2 parts.

Solution: We begin by defining the following combinatorial classes:

 \mathcal{A} :

Set: $\{1, 2, 3, \ldots\}$

Weight Function: w(x) = x

Generating Function: $A(z) = z + z^2 + z^3 + \ldots = \frac{z}{1-z}$

We note that \mathcal{A} defines the combinatorial class for the compositions of n with 1 part.

 \mathcal{A}^2 :

Set: (a_1, a_2) , where a_1 and a_2 are each elements of $\{1, 2, 3, \ldots\}$

Weight Function: $w((a_1, a_2)) = a_1 + a_2$

Generating Function: $(A(z))^2 = \frac{z^2}{(1-z)^2}$

We note that \mathcal{A}^2 defines the combinatorial class for the compositions of n with 2 parts.

Then,

 $A^2 + A$:

Set: (a_1, a_2) , where a_1 and a_2 are each elements of $\{1, 2, 3, \ldots\}$ combined with $\{1, 2, 3, \ldots\}$ **Weight Function:**

$$\begin{cases} w((a_1, a_2)) = a_1 + a_2 & \text{if the element has two parts} \\ w(x) = x & \text{if the element has one part} \end{cases}$$

Generating Function: $A(z) + (A(z))^2 = \frac{z}{1-z} + \frac{z^2}{(1-z)^2}$

This then gives the generating function for the compositions with 1 OR 2 parts, where the weight function is the sum of the integers in the composition.

10. Challenge: How many compositions of n are there (of any number of parts)?

Solution: We begin by defining the following combinatorial class:

 \mathcal{A} :

Set: $\{1, 2, 3, \ldots\}$

Weight Function: w(x) = x

Generating Function: $A(z) = z + z^2 + z^3 + \ldots = \frac{z}{1-z}$

We note that A defines the combinatorial class for the compositions of n with 1 part.

Then, similar to Problem 9, we wish to add together all possible classes which represent having a certain number of parts. In other words, we want $1 + \mathcal{A} + \mathcal{A}^2 + \mathcal{A}^3 + \mathcal{A}^4 + \ldots$, as each power of \mathcal{A} represents adding another possibility for the number of parts in the composition (the 1 represents a composition with no parts).

Note that $1 + \mathcal{A} + \mathcal{A}^2 + \mathcal{A}^3 + \ldots = \sum_{k=0}^{\infty} \mathcal{A}^k$. We can thus apply a rule similar to the sum of Geometric Series to get that $\sum_{k=0}^{\infty} \mathcal{A}^k = \frac{1}{1-\mathcal{A}}$. So, our new combinatorial class has:

Set: Compositions of n

Weight Function: $w((a_1, a_2, ...)) = a_1 + a_2 + ...$

Generating Function: $\frac{1}{1-A(z)} = \frac{1}{(1-\frac{z}{1-z})}$

Then,

$$[z^n] \frac{1}{(1 - \frac{z}{1 - z})} = [z^n] \frac{1}{(1 - \frac{z}{1 - z})} \cdot \frac{1 - z}{1 - z}$$

$$= [z^n] \frac{1 - z}{1 - 2z}$$

$$= [z^n] \left[\frac{1}{1 - 2z} - \frac{z}{1 - 2z} \right]$$

$$= [z^n] \left[\sum_{n=0}^{\infty} (2z)^n - z \sum_{n=0}^{\infty} (2z)^n \right]$$

$$= [z^n] \sum_{n=0}^{\infty} 2^n z^n - [z^n] z \sum_{n=0}^{\infty} (2z)^n$$

$$= [z^n] \sum_{n=0}^{\infty} 2^n z^n - [z^{n-1}] \sum_{n=0}^{\infty} (2z)^n$$

$$= 2^n - 2^{n-1}$$

$$= 2^{n-1} (2 - 1)$$

$$= 2^{n-1}$$